Schrödinger principal-component analysis: On the duality between principal-component analysis and the Schrödinger equation
نویسندگان
چکیده
Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds duality between eigenmodes field and eigenstates Schr\"odinger equation. Based on we propose algorithm replace expensive solver with more sample-efficient equation solver. We verify validity theory effectiveness numerical experiments.
منابع مشابه
Principal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملOn Bayesian principal component analysis
A complete Bayesian framework for Principal Component Analysis (PCA) is proposed in this paper. Previous model-based approaches to PCA were usually based on a factor analysis model with isotropic Gaussian noise. This model does not impose orthogonality constraints, contrary to PCA. In this paper, we propose a new model with orthogonality restrictions, and develop its approximate Bayesian soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physreve.104.025307